The sum formula of sine function is,
sin (A + B) = sin A cos B + cos A sin B
When A = B, the above formula becomes,
sin (A + A) = sin A cos A + cos A sin A
sin 2A = 2 sin A cos A
Let us derive an alternate formula for sin 2A in terms of tan using the Pythagorean identity sec2A = 1 + tan2A.
sin2A=2sinAcosA=2sinAcos2AcosA=2sinAcosA⋅cos2A=2tanA⋅1sec2A=2tanA1+tan2Asin2A=2sinAcosA=2sinAcos2AcosA=2sinAcosA⋅cos2A=2tanA⋅1sec2A=2tanA1+tan2A
Thus, the double angle formulas of sine function are
sin 2A = 2 sin A cos A (or) (2 tan A) / (1 + tan2A)
Leave a Reply