The sum formula of cosine function is,
cos (A + B) = cos A cos B – sin A sin B
When A = B, the above formula becomes,
cos (A + A) = cos A cos A – sin A sin A
cos 2A = cos2A – sin2A
Let us use this as a base formula to derive two other formulas of cos 2A using the Pythagorean identity sin2A + cos2A = 1.
(i) cos 2A = cos2A − (1 − cos2A) = 2cos2A – 1
(ii) cos 2A = (1- sin2A) – sin2A = 1 – 2sin2A
Now, we will derive the formula of cos 2A in terms of tan using the base formula.
cos2A=cos2A−sin2A=cos2A(1−sin2Acos2A)=1sec2A(1−tan2A)=11+tan2A(1−tan2A)=1−tan2A1+tan2Acos2A=cos2A−sin2A=cos2A(1−sin2Acos2A)=1sec2A(1−tan2A)=11+tan2A(1−tan2A)=1−tan2A1+tan2A
Thus, the double angle formulas of the cosine function are:
cos 2A = cos2A – sin2A (or) 2cos2A – 1 (or) 1 – 2sin2A (or) (1 – tan2A) / (1 + tan2A)
Leave a Reply