Double Angle Formulas of Cos

The sum formula of cosine function is,

cos (A + B) = cos A cos B – sin A sin B

When A = B, the above formula becomes,

cos (A + A) = cos A cos A – sin A sin A

cos 2A = cos2A – sin2A

Let us use this as a base formula to derive two other formulas of cos 2A using the Pythagorean identity sin2A + cos2A = 1.

(i) cos 2A = cos2A − (1 − cos2A) = 2cos2A – 1

(ii) cos 2A = (1- sin2A) – sin2A = 1 – 2sin2A

Now, we will derive the formula of cos 2A in terms of tan using the base formula.

cos2A=cos2A−sin2A=cos2A(1−sin2Acos2A)=1sec2A(1−tan2A)=11+tan2A(1−tan2A)=1−tan2A1+tan2Acos⁡2A=cos2⁡A−sin2⁡A=cos2⁡A(1−sin2⁡Acos2⁡A)=1sec2⁡A(1−tan2⁡A)=11+tan2⁡A(1−tan2⁡A)=1−tan2⁡A1+tan2⁡A

Thus, the double angle formulas of the cosine function are:

cos 2A = cos2A – sin2A (or) 2cos2A – 1 (or) 1 – 2sin2A (or) (1 – tan2A) / (1 + tan2A)


Posted

in

by

Tags:

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *